POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Fundamentals of chemical engineering - heat and mass transfer processes [S1IFar1>PICpwcim]

Course		
Field of study Pharmaceutical Engineering	Year/So 3/5	emester
Area of study (specialization)		of study academic
Level of study first-cycle	Course offered in polish	
Form of study full-time	Requirements elective	
Number of hours		
Lecture 0	Laboratory classes 15	Other (e.g. online) 0
Tutorials 0	Projects/seminars 0	
Number of credit points 1,00		
Coordinators Lecturers		
prof. dr hab. inż. Grzegorz Musiela grzegorz.musielak@put.poznan.pl	k	
dr inż. Kinga Rajewska kinga.rajewska@put.poznan.pl		

Prerequisites

The student has ordered knowledge of mathematics, physics and chemistry acquired in classes at the first degree of study, enabling understanding of physical and chemical phenomena in the field of momentum, heat and mass exchange processes. Is able to acquire and supplement knowledge on chemistry, physics and mathematics from academic textbooks, other books and databases, has the ability to self-study, is able to work individually and in a team, plan and conduct experiments, interpret the results obtained and draw conclusions, is able to apply the principles of health and safety related to with work done. Understands the need for continuous training and setting ambitious goals on the way to achieving higher education, is aware of the responsibility for tasks carried out in teamwork.

Course objective

Understanding the basic industrial processes and unit operations related to chemical and process engineering on a laboratory scale. Developing skills to analyze and interpret observation results and experiments for heat and mass transfer issues.

Course-related learning outcomes

Knowledge:

- 1. has solid knowledge in the field of basic processes: mass, energy and momentum exchange k_w10
- 2. knows the basics of kinetics, thermodynamics of chemical processes k_w11

3. has knowledge of fluid mechanics, hydraulics and flow dynamics, as well as technical rheology in the field appropriate for pharmaceutical engineering -k_w12

Skills:

1. is able to plan and conduct simple experiments in the field of pharmaceutical engineering, both experimental and simulation, as well as interpret their results and draw conclusions - k_u12 2. observes the health and safety rules when working in the laboratory - k_u22

3. self-study skills - k u24

Social competences:

- 1. understands the need for self-education and raising their professional competences k_k1
- 2. is aware of compliance with ethical principles in the broad sense k_k4 , k_k8
- 3. can work in a team k_k2

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Completion of the laboratory based on knowledge (oral/written answer carried out in stationary or online mode, depending on the method of conducting classes), teamwork during exercises, the ability to perform simple measurements, develop the results of experiments and the ability to draw conclusions from experiments.

Programme content

The cycle of laboratory classes includes five exercises in the field of heat and mass exchange processes: 1. Heat exchanger.

- 2. Determination of heat conduction coefficient in a nonstationary process.
- 3. Determination of air humidity by psychrometric method.
- 4. Convection and microwave drying comparison and assessment of process efficiency.
- 5. Filtration through a porous bed.

Teaching methods

Performing practical exercises in accordance with the course plan and presenting a written report.

Bibliography

Basic

- 1. J. Bukowski, Mechanika płynów, PWN Warszawa, 1970, wyd. 3
- 2. J. Ciborowski, Inżynieria procesowa, Warszawa, WNT 1973
- 3. T. Hobler, Ruch ciepła i wymienniki, wyd. 4, Warszawa, PWN 1971 Additional
- 1. J.E. Elsner, Turbulencja przepływów, PWN Warszawa 1987
- 2. Podstawowe procesy inżynierii chemicznej. Przenoszenie pędu, ciepła i masy, praca zbiorowa pod red.
- Z. Ziołkowskiego, PWN Warszawa 1982

Breakdown of average student's workload

	Hours	ECTS
Total workload	30	1,00
Classes requiring direct contact with the teacher	20	0,70
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	10	0,30